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Introduction

Let (L,H) → (Σ, gΣ, ωΣ) be a Hermitian line bundle over a Riemann surface. A vor-
tex is a Hermitian connection, A ∈ AH(L), and a smooth section of L, φ ∈ Ω0(Σ;L),
which minimise the Yang-Mills-Higgs functional ,
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where τ > 0 is a real parameter. Vortices are static minimisers of a similar time-
dependent functional and so are sometimes called static vortices.

It is well known that (A, φ) ∈ AH(L) × Ω0(Σ;L) is a vortex if and only if A is
integrable (the (0, 2)-part of its curvature vanishes) and if the pair satisfy the vortex
field equations [5, pp. 54–55],
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Moreover, Bradlow [2] showed that a necessary and sufficient condition for the exist-
ence of vortices is non-negativity of the quantity,

ε := τ VolΣ− 4πN

where N is the degree of L.

In this poster we consider geodesic motion on the moduli space Mε with respect to
a natural Riemannian metric (in the manner of the geodesic approximation of Man-
ton [6, §4.5]) and present some results the dynamics of dissolved (ε = 0) vortices
when N = 2.

Vortex Moduli Spaces on Elliptic Curves

The moduli space of N -vortices is a quotient of a L2-space by a proper group action,
and so it is equipped with an L2-metric, gε. However, Mε is also in bijection with
the space of degree N divisors on Σ, DivN(Σ) ∼= Σ(N) := ΣN/SN .

A linear equivalence class of divisors, [D] := {D′ = D + (f )}, defines a finite dimen-
sional subspace H0(Σ;O(D)) ⊂ Ω0(Σ;L). The projectivisation of the latter is in
bijection with [D] and can be viewed as a subspace of Mε. H0(Σ;O(D)) also carries
an L2-metric from H, which then induces a metric, gFS, on PH0(Σ;O(D)).

A conjecture of Baptista and Manton [1] says that when Σ is the round sphere, gε
is well approximated by gFS. This was studied further by Manton and Romão [7] and
Rink [8] and recently García Lara and Speight [4] proved a slight generalisation of the
original conjecture.

In [3], the authors show that for an arbitrary Hermitian line bundle over a Riemann
surface, the restriction of gε to a divisor class [D] is well approximated by gFS in C1.
If [D] is fixed by an isomorphism, it defines a geodesic submanifold of Mε and thus
geodesics of gε are well approximated by geodesics of gFS by the prior result.

Here we study divisors on Σ = C/Λ which are fixed by the isomorphism z 7→ −z.
We compute geodesics in terms of divisors and describe their topological properties,
eventually using this description to compute their Higgs fields.

The Equivariant Weierstrass ℘ Function

For Σ an elliptic curve, the only divisors fixed by z 7→ −z are degree two divisors
D linearly equivalent to 2 · 0. These are precisely the fibre of the two-to-one cover
℘ : Σ → P1. We consider the function ℘equiv = R ◦℘ for a Möbius transformation R
such that ℘equiv is equivariant with respect to certain K4-actions on Σ and P1. This
allows us to pull-back great circles to geodesics on Σ.

We focus on two cases, the square and equianharmonic lattices, below we show ste-
reographic plots of the critical values of ℘equiv in these cases.

Figure 1: Critical values and loci for
℘equiv on the equianharmonic lattice
with great circles plotted in colour.

Figure 2: Critical values and loci for
℘equiv on the square lattice with great
circles plotted in colour.

The critical values are plotted in blue and correspond to ramification values of
℘equiv/collisions of vortex cores. Note that given p ∈ P1 we have a great circle
p⊥ :=

{
q ∈ P1 | q · p = 0

}
. The black lines are critical loci . If a point lies on a

critical locus, the great circle it defines passes through one of the critical values. The
white regions therefore correspond to great circles which avoid critical values/colli-
sions. Example great circles are shown in red, green, and cyan.

Geodesics

Plotting geodesics on the square lat-
tice, we note that perturbing a geodesic
within a region enclosed by critical loci
does not change the homotopy type of
the geodesic. Moving to a different re-
gion does change the homotopy type
and so the regions correspond to differ-
ent homotopy types of geodesics.

Moreover, we see that moving a great
circle close to a critical value brings the
geodesic close to a collision. This is
further evidenced by animations of col-
lisions.

Figure 3: Geodesics on the square lat-
tice.

The equianharmonic lattice differs from the square lattice in that it also supports
contractible connected geodesics. Physically, these correspond to a pair of vortices
circling a common barycenter.

Figure 4: Geodesics on the equianharmonic lattice.

Conclusions and Future Work

We have demonstrated several possible dynamics of dissolved vortices and noted the
existence of periodic motion of vortices. Moreover, we have begun to classify the
topological types of possible dynamics and how this depends on the surface geometry,
noting that certain types of vortex motion are only possible with certain base geomet-
ries.

Future directions include seeing whether this approach generalises to higher genus
curves and attempting an algebraic classification of possible types of motion.

References

[1] J. M. Baptista and N. S. Manton. ‘The Dynamics of Vortices on S² near the Bradlow Limit’. In: Journal of Mathematical Physics 44.8 (2003), pp. 3495–3508.
arXiv: hep-th/0208001 (cit. on p. 1).

[2] S. B. Bradlow. ‘Vortices in Holomorphic Line Bundles over Closed Kähler Manifolds’. In: Communications in Mathematical Physics 135.1 (1990), pp. 1–17
(cit. on p. 1).

[3] G. Chaudhuri, D. Harland and M. Speight. Higher Regularity Convergence of the Vortex Metric in the Dissolving Limit. In preparation (cit. on p. 1).
[4] R. I. García Lara and J. M. Speight. The Geometry of the Space of Vortices on a Two-Sphere in the Bradlow Limit. 2022. arXiv: 2210.00966 [math]. url:

http://arxiv.org/abs/2210.00966 (visited on 04/10/2022). Pre-published (cit. on p. 1).
[5] A. Jaffe and C. Taubes. Vortices and Monopoles: Structure of Static Gauge Theories. Progress in Physics 2. Boston: Birkhäuser, 1980. 287 pp. (cit. on p. 1).
[6] N. Manton and P. Sutcliffe. Topological Solitons. Cambridge Monographs on Mathematical Physics. Cambridge, U.K. ; New York: Cambridge, 2004. 493 pp.

(cit. on p. 1).
[7] N. S. Manton and N. M. Romão. ‘Vortices and Jacobian Varieties’. In: Journal of Geometry and Physics 61.6 (2011), pp. 1135–1155. arXiv: 1010.0644

[hep-th] (cit. on p. 1).
[8] N. A. Rink. ‘Vortices and the Abel–Jacobi Map’. In: Journal of Geometry and Physics 76 (2014), pp. 242–255 (cit. on p. 1).

Animations and high resolution plots are available at https://gchaudhuri.dev/
gallery/gmom-2024/ or via the QR code below.
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